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This investigation extends earlier studies of a shear-transformation-zone(STZ) theory of plastic deformation
in amorphous solids. The main purpose is to explore the possibility that the configurational degrees of freedom
of such systems fall out of thermodynamic equilibrium with the heat bath during persistent mechanical defor-
mation and that the resulting state of configurational disorder may be characterized by an effective temperature.
The further assumption that the population of STZ’s equilibrates with the effective temperature allows the
theory to be compared directly with experimentally measured properties of metallic glasses, including their
calorimetric behavior. The coupling between the effective temperature and mechanical deformation suggests an
explanation of shear-banding instabilities.
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I. INTRODUCTION

This is the third in a recent series of studies of shear-
transformation-zone(STZ) models of plastic deformation in
amorphous solids. In the earlier two papers, Falk, Pechenik,
and I showed how to use principles of symmetry and energy
balance to constrain the form of STZ theories at low tem-
peratures[1] and then used those ideas to construct a finite-
temperature theory[2] whose predictions could be compared
with the behavior of metallic glasses observed by Katoet al.
[3] and Luet al. [4]. Our version of STZ theory was intro-
duced originally in[5]. It differs from the flow-defect theo-
ries of Turnbull and Cohen[6], Spaepen and Taub[7,8], and
Argon [9] primarily in that, instead of simply postulating an
equation of motion for the STZ density, we included a rudi-
mentary model for the irreversible, internal dynamics of
these zones. This augmented STZ theory exhibits an ex-
change of dynamic stability between jammed and flowing
states at a stress that we identify as a yield stress. Our main
conclusion in[2] was that the transition between linear New-
tonian viscosity and nonlinear superplasticity reported in
[3,4] can be explained quantitatively as a transition between
thermally activated creep at low stress and the onset of plas-
tic flow at the STZ yield stress.

My first purpose here is to address several issues that
were left outstanding in[2]. The most important of these
were questions pertaining to the STZ density. In order to
retain an essential simplicity in[2], we found it best to leave
the theory in a form in which that density approached a
temperature-independent value in the limit of small but non-
vanishing driving force. We pointed out that this limiting
density, after indefinitely long aging, ought to relax to its
thermal equilibrium value and that we would need to incor-
porate such an aging mechanism into a next version of the
theory. More generally, we argued that the subtle interplay
between limiting behaviors at small strain rates and small
temperatures provides an important clue about the funda-
mental nonequilibrium properties of these systems.

My present hypothesis is that the STZ density is governed
by an effective temperatureTef f of the kind discussed, for

example, in papers by Onoet al. [10], Cugliandoloet al.
[11], Sollich et al. [12], Berthier and Barrat[13], and Lacks
[14]. Some aspects of these ideas are related to work by
Mehta and Edwards[15]. As proposed in Refs.[10–14], Tef f
differs from the ordinary thermal temperatureT in circum-
stances where the slowly changing configurational degrees of
freedom of the system fall out of equilibrium with the heat
bath—a situation that occurs when molecular rearrangements
are driven by plastic deformation. My ideas have emerged in
part from discussions with Lemaitre[16], who has ap-
proached the concept of effective temperature from a differ-
ent point of view.

More specifically, I assume that, in a nonequilibrium sys-
tem, the STZ density is driven towardn` exps−1/xd, where
x=kB Tef f/EZ. In this regard, the reduced effective tempera-
ture x is very nearly, but not quite, the same as Spaepen’s
reduced free volume[7,8]. Here,EZ is a characteristic energy
associated with STZ formation andn` is a density of the
order of the number of molecules per unit volume. This as-
sumption implies that the local energy(or density) fluctua-
tions of the slowly varying configurational degrees of free-
dom are described by a Boltzmann distribution with effective
temperatureTef f. That is, I assume that persistent deforma-
tion accompanied by molecular rearrangements produces a
steady state of disorder in an amorphous system. In the ab-
sence of constraints other than number and energy conserva-
tion, the statistical distribution of density fluctuations must
maximize an entropy, and therefore that distribution should
be described by a temperature. To be consistent with the
underlying assumption that the STZ’s are sparsely distributed
in the material, they must account for only a small fraction of
the configurational degrees of freedom. Thus the probability
of finding STZ’s should be accurately proportional to a
Boltzmann factor exps−EZ/kBTef fd and should be far out in
the wings of this statistical distribution.

The underlying structure of an STZ theory based on the
effective-temperature hypothesis is outlined in Sec. II. Here I
reintroduce the fully nonlinear STZ theory[5] in a version
suitable for use at nonzero temperatures. As we pointed out
in [2], the so-called “quasilinear theory” used in the preced-
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ing papers has serious shortcomings, specifically a lack of
realistic memory effects and unrealistically large plastic de-
formation at small stresses. It also has an unattractive asym-
metry between the rates of shear transformations and dila-
tional rearrangements, which must be corrected in order to
deal systematically with thermal effects. Section II concludes
with a statement of the fully nonlinear equations of motion
for the internal-state variables. In Sec. III, I present argu-
ments in favor of the effective-temperature hypothesis and
make a rough estimate of the limiting value ofx at small but
nonvanishing strain rates. I then show how these arguments
can be used to determine an equation of motion forx.

The remainder of this paper is devoted to exploring the
predictions of these equations of motion and comparing them
with the results of metallic glass experiments, primarily
those of Lu et al. [4] on bulk amorphous
Zr41.2Ti13.8Cu12.5Ni10Be22.5. I discuss a wide range of such
measurements including the steady-state stress versus strain-
rate data and the stress-strain curves obtained at various
strain rates and temperatures, in analogy to our presentation
in [2]. With this version of the theory, I can go on to compute
specific-heat curves obtained by differential scanning calo-
rimetry and also can discuss the way in which those mea-
surements may be interpreted in terms of effective tempera-
tures. I conclude with some remarks about how shear-
banding instabilities may arise in theories of the kind
introduced here.

II. BASIC EQUATIONS OF MOTION

Let us start by summarizing briefly the assumptions and
definitions used in[1,2]. Assume that, instead of being struc-
tureless objects as in the flow-defect theories of[6–9], the
STZ’s are two-state systems which, in the presence of a shear
stress, can transform back and forth between just two differ-
ent orientations. Importantly, these STZ’s are created and
annihilated during irreversible deformations of the material.
As in [2], consider first a two-dimensional system and sub-
ject it only to pure shear deformations.(The transformation
of the two-dimensional results into a form suitable for analy-
sis of three-dimensional experiments is discussed at the be-
ginning of Sec. IV. It is described in more detail in[2].) In
this case, we need to consider only situations in which the
orientation of the principal axes of the stress and strain ten-
sors remains fixed. That is, we do not need to consider situ-
ations in which a fully off-diagonal tensorial version of the
STZ theory is necessary, as in the necking calculations re-
ported in[17]. Therefore, it is sufficient to assume that the
population of STZ’s consists simply of zones oriented along
the two relevant principal axes of the stress tensor and, with-
out loss of generality, to let the deviatoric stresssij be diag-
onal along thex, y axes. Specifically, letsxx=−syy=s and
sxy=0. Then choose the “+” zones to be oriented(elongated)
along thex axis and the “−” zones along they axis, and
denote the population density of zones oriented in the “+/−”
directions by the symboln±.

With these conventions, the plastic strain rate is

ėxx
pl = − ėyy

pl ; ėpl =
l

t0
fRs− s̃dn− − Rss̃dn+g. s2.1d

Here,l is a material-specific parameter with the dimensions
of volume (or area in strictly two-dimensional models),

which must have roughly the same order of magnitude as the
volume of an STZ—that is, a few cubic or square atomic
spacings. The remaining factor on the right-hand side of Eq.
(2.1) is the net rate per unit volume at which STZ’s trans-
form from “−” to “+” orientations.Rss̃d /t0 andRs−s̃d /t0 are
the rates for “+” to “−” and “−” to “+” transitions, respec-
tively. The dimensionless stress iss̃=s/ m̄, where m̄ is an
effective shear modulus that will turn out to be an accurate
approximation for the yield stress at the temperatures of in-
terest here.t0 sets a time scale for the molecular rearrange-
ments. As we shall see,t0 is not defined here in quite the
same way as it was in[2].

A basic assumption in this paper is that, in contrast to Eq.
(3.3) in [2], we can rewrite the master equation for the den-
sitiesn± in the form

t0ṅ± = Rs7 s̃dn7 − Rs± s̃dn± + sG + rdSn`

2
e−1/x − n±D .

s2.2d

The first pair of terms on the right-hand side describes the
same switching back and forth of the STZ’s that appears in
Eq. (2.1), and the last terms describe the rates of creation and
annihilation of zones. In writing the latter terms, I am using
the principle of detailed balance to fix the ratio of the anni-
hilation and creation factors, and accordingly am omitting
the quadratic term that we used in[2]. As before, the rate
factor multiplying the annihilation and creation terms con-
sists of the driven partG and the spontaneous thermal part
rsTd. Our usual notation is

L ;
n+ + n−

n`

, D ;
n+ − n−

n`

, s2.3d

and

Sss̃d ;
1

2
fRs− s̃d − Rs+ s̃dg, Css̃d ;

1

2
fRs− s̃d + Rs+ s̃dg,

Tss̃d ;
Sss̃d

Css̃d
. s2.4d

Then, using Eq.(2.1) and defininge0;l n`, we have

t0 ėpl = e0 Css̃dfL Tss̃d − Dg, s2.5d

t0Ḋ = 2Css̃dfLTss̃d − Dg − sG + rdD, s2.6d

and

t0L̇ = sG + rdse−1/x − Ld. s2.7d

The next step is to use the energy-balance argument in-
troduced in[1] to evaluate the quantityG. Both the effective
temperature and the fully nonlinear rate factorRss̃d will in-
troduce features that were not present in[1] or [2]; therefore
it will be useful to rewrite this analysis. As in the earlier
papers, we start by writing the first law of thermodynamics
in the form
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2ėpls=
2e0m̄

t0
Css̃dfLTss̃d − Dgs̃=

d

dt
CsL,Dd + Qss̃,L,Dd.

s2.8d

The left-hand side of Eq.(2.8) is the rate at which plastic
work is done by the applied stresss=m̄s̃. On the right-hand
side, C is the recoverable, state-dependent, internal energy
associated with the STZ’s. Because the STZ’s in this formu-
lation represent only a very small fraction of the configura-
tional degrees of freedom,C is not the energy(or enthalpy)
obtained by calorimetric measurements. Therefore, this pic-
ture is different from the one presented in[1,2], where we
did compareC qualitatively to calorimetric data[18–20]. In
either case,C must be proportional to the density of STZ’s
and must have the dimensions of energy per unit volume;
therefore it is convenient to write it in the form

CsL,Dd = m̄e0Lcsmd, m;
D

L
. s2.9d

The last term on the right-hand side of Eq.(2.8)—i.e.,
Q—is the energy dissipation rate per unit volume. The cen-
tral hypothesis of[1] is thatG is simply proportional to the
rate of energy dissipation per STZ—that is,

Qss̃,L,Dd =
e0m̄

t0
LGss̃,L,md. s2.10d

We then can use Eqs.(2.6) and(2.7) to write Eq.(2.8) in the
form

2Css̃dLfT ss̃d − mgs̃= fcsmd − mc8smdgfGss̃,L,md + rsTdg

3se−1/x − Ld+ c8smdLh2Css̃d

3fT ss̃d − mg − fGss̃,L,md + rsTdgmj

+ LGss̃,L,md, s2.11d

which can be solved easily forG or, more conveniently, for

G̃;G+r:

Gss̃,L,md + rsTd = LF 2Css̃dfT ss̃d − mgfs̃− c8smdg + rsTd
L − mc8smde−1/x + csmdse−1/x − Ld

G
; G̃ss̃,L,md. s2.12d

Our equations of motion are now

t0ėpl = e0Css̃dLfT ss̃d − mg, s2.13d

t0ṁ= 2Css̃dfT ss̃d − mg −
m

L
G̃ss̃,L,mde−1/x, s2.14d

and

t0L̇ = G̃ss̃,L,mdse−1/x − Ld. s2.15d

Next we must specify the rate factorsRss̃d and rsTd. In
[2], we identifiedr as being associated with dilational fluc-
tuations and wrote it in the form

rsTd
t0

=
r0

t0
expS−

DV0
dil

v fsTd
D , s2.16d

wherer0 is a dimensionless prefactor,DV0
dil is the activation

volume required for a dilational rearrangement, andv fsTd is
usually identified as the free volume. In fact, in[2] we
treatedv fsTd as a phenomenological function, not necessarily
the same as the free volume, and evaluated it directly from
the measured viscosities with no use of the Vogel-Fulcher or
Cohen-Grest formulas[21]. We then suggested, in analogy to
the fully nonlinear STZ model[5], that the shear rates ought
to have the form

Rss̃d = expS−
DVshearss̃d

v fsTd
D, DVshearss̃d = DV0

sheare−s̃.

s2.17d

Setting the exponential prefactor equal to unity in Eq.(2.17)
definest0

−1 to be the value of the dimensional rateRss̃d /t0 in
the limit s̃→`. Since the dominant temperature dependence
of this rate should occur via the functionv fsTd in the expo-
nent, we may expect thatt0 is at most a slowly varying
function of T. With the definitionDV0

shear/v fsTd;asTd, we
have

Css̃d = exp f− a coshss̃dg coshfa sinhss̃dg s2.18d

and

Tss̃d = tanhfa sinhss̃dg. s2.19d

In the applications to be considered here, there seems to be
no reason to expect two different activation volumes or two
different time constants for dilational and shear rearrange-
ments; therefore I shall assume thatDV0

dil =DV0
shear and r0

=1. Then,

rsTd = e−asTd. s2.20d

Eventually, we shall need to include pressure dependence in
the function asTd, but that too will be unnecessary for
present purposes.

The final step in deriving equations of motion forL andm
is to choosecsmd so that the numerator in the expression for

G̃ in Eq. (2.12) is non-negative for all values ofs̃. To do this,
compute the inverse function ofT; that is, find the function
jsmd such thatT sjd=m. Then, becauseT is a monotonically
increasing function of its argument, the choicec8smd=jsmd
assures us that bothT ss̃d−m and s̃−jsmd change sign at the
same value ofs̃ and, therefore, that the product of these two
factors is never negative. For the specific choice ofT given
in Eq. (2.19):

jsmd = lnFÎ1 +
1

4a2ln2S1 + m

1 − m
D +

1

2a
lnS1 + m

1 − m
DG

s2.21d

and
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csmd = cs0d +E
0

m

jsmddm. s2.22d

cs0d is an as-yet undetermined constant which, as it turns
out, we shall not need to evaluate. The result is

G̃ss̃,L,md =
L

MsL,md
h2Css̃dfT ss̃d − mgfs̃− jsmdg + rsTdj,

s2.23d

where

MsL,md = L − mjsmde−1/x + csmdse−1/x − Ld. s2.24d

Positivity of G̃ requires thatMsL ,md remain positive
along all the system trajectories determined by Eqs.(2.14)
and (2.15) in the space of variablesL andm. This happens
automatically as long as all trajectories start at points where
MsL ,md.0. The locus of points along whichMsL ,md
changes sign is a dynamical boundary for these trajectories;
the dissipation rate diverges at that boundary, and the trajec-
tories are strongly repelled from it in a way that does not
allow them to cross into unphysical regions where the dissi-
pation rate is negative. An interesting feature of this fully
nonlinear case is that the boundary always occurs whenm is
slightly smaller than unity because of the weak divergence of
the function jsmd when m→1. For example, settingL
=e−1/x and using Eq.(2.21) with a=2, I find that the upper
limit of m is 0.983 732. We shall see that the interesting
values ofa are generally much larger than this, of order 10
or more, in which case the upper limit ofm is practically
indistinguishable from unity.

These equations of motion simplify greatly if we note that
L=e−1/x is always the only stable stationary solution of Eq.
(2.15) and use this relation to eliminateL from the beginning
of the analysis.(There seems to be no conventional experi-
mental method for adjustingL and x independently of one
another.) Then we have

t0ėpl = e0e
−1/xCss̃dfT ss̃d − mg, s2.25d

t0ṁ=
2Css̃dfT ss̃d − mgs1 − ms̃d − mrsTd

1 − mjsmd
, s2.26d

and

G̃ =
2Css̃dfT ss̃d − mgfs̃− jsmdg + rsTd

1 − mjsmd
. s2.27d

Note that the effective temperaturex now appears explicitly
only in the strain-rate equation(2.25), where it determines
the density of STZ’s that must appear in front of the rate
factor. Conveniently, the as-yet undetermined energycs0d
disappears entirely when we assume thatL is always in equi-
librium with the configurational degrees of freedom at their
effective temperature. Note also that this approximation will
have no effect on any of the steady-state calculations pre-
sented below.

Equations(2.25) and(2.26) describe the same exhange of
stability at a yield stress that we found in earlier papers
[1,2,5]. At low temperatures, wherersTd→0, the steady-
state solutions of Eq.(2.26) are m=T ss̃d (the jammed state
with ėpl=0) andm=1/s̃ (the flowing state withėplÞ0). The
two curves cross ats̃= s̃y where s̃yT ss̃yd=1. The jammed
state is dynamically stable fors̃, s̃y, and the flowing state is
stable fors̃. s̃y. For values ofasTd appreciably larger than
unity, the solution of this equation iss̃y<1; thus the yield
stress issy< ū.

For nonzerorsTd, the stable branch of the steady-state
solutions of Eq.(2.26)—say,m=m0ss̃d—is

m0ss̃d =
1

2s̃
S1 + s̃T ss̃d +

rsTd
2Css̃dD

−
1

2s̃
ÎS1 + s̃T ss̃d +

rsTd
2Css̃dD

2

− 4s̃T ss̃d.

s2.28d

This function is shown in Fig. 1 along with graphs ofm
=T ss̃d andm=1/s̃, which are the asymptotic values ofm0ss̃d
in the limit r→0, below and above the yield stress, respec-
tively. In order that these two sets of curves not lie exactly on
top of each other, I have chosena=6, which will turn out to
correspond to a relatively high temperature of about 730 K,
and have used Eq.(2.20) to evaluater in Eq. (2.28).

III. EFFECTIVE TEMPERATURE

We now need an equation of motion for the effective tem-
peraturex. Before writing such an equation, however, it will
be useful to discuss some underlying concepts.

The theory as described so far contains three distinct time
scales. The first of these ist0, the roughly temperature-
independent time associated with STZ transitions that are
driven by stresses of order the yield stress or larger. This

FIG. 1. Graph of the dimensionless functionm0ss̃d, s̃=s/ m̄
,s/sy, for a=6. Also shown are the related functionsT ss̃d and 1/s̃.
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time will turn out to be very short, of the order of microsec-
onds. A second time scale ist0/rsTd;tT, which is the
strongly temperature-dependent time associated with sponta-
neous(i.e., stress-independent) thermally activated molecu-
lar rearrangements. At low temperatures,tT becomes very
long. The third time scale is the inverse of the strain rate
sėpld−1;teps, which is determined by the externally imposed
loading.

We argued in[2] that teps is the only relevant time scale
for behavior in the regime wheret0!teps!tT. This is the
situation in which the temperatureT is so low that molecular
rearrangements are not thermally activated and the actual
rearrangements, when they occur, are effectively instanta-
neous. Thus, under steady-state conditions, the number of
events in which rearrangements occur is not proportional to
the time but to the strain. As already stated in the Introduc-
tion, steady-state deformation with molecular rearrange-
ments must produce a steady state of disorder in an amor-
phous system—a statistical distribution of density
fluctuations which, in turn, ought to maximize an entropy
and therefore be described by an effective temperature.
Therefore, after very long times and as long asteps!tT, the
quantityx must approach a definite value—say,x`. A more
mathematically precise way of saying this, which reminds us
that we must be looking in the limit in which bothtepsandtT
are very much longer thant0, is thatx→x` if we take the
limit ėpl→0 after T→0.

To make a rough estimate forx`, we can use the Stokes-
Einstein fluctuation-dissipation relation in a way that will
require careful discussion. An oversimplified derivation
starts by noting that, because there is a yield stresssy in these
models, the viscosity ish=sy/ s2 ėpld. Then, if the only rel-
evant time scale in the model isteps, it follows that the dif-
fusion constantD, measured over times much longer than
teps, must be proportional to,2ėpl, where, is the character-
istic displacement of a molecule during an STZ-like
rearrangement—i.e., roughly a molecular spacing. Finally,
the Stokes-Einstein relation says thatD~kB T` /h ,, where
T`=EZ x` /kB. It follows that kB T`~,3 sy, independent
of ėpl.

One problem with this analysis is that the viscosity in the
Stokes-Einstein formula is the linear response coefficient re-
lating flow to driving force in the limit of vanishing stress
and strain rate, whereas it is used here at the yield stress. A
related and possibly mitigating problem is that the “tempera-
ture” T` that we supposedly are evaluating with the Stokes-
Einstein formula is a very-low-frequency(essentially static)
noise strength that determines the spatial distribution of en-
ergy and density fluctuations but not the rates at which those
fluctuations vary in time. The temporal rates are determined
by the strain rateėpl, which, in this limit, is small but much
faster than the essentially negligible rearrangement rates in-
duced by true thermal fluctuations.

It helps to visualize the situation as follows. At zeroT, for
small strain rates, the graph of stress as a function of strain
rate consists simply of a horizontal line ats=sy. Now add to
this system a slow noise source with characteristic frequen-
cies of order, say,vnoise, which couples only to the configu-
rational degrees of freedom. Let the strength of this noise
source be determined by an effective temperatureT`. At non-

zero T`, the stress versus strain-rate graph must start at the
origin and rise with a slope 2hsT`d, where hsT`d is the
viscosity measured by averaging the stress over times longer
than vnoise

−1 . This section of the curve at smallėpl will ex-
trapolate tos=sy at a strain rate—say,ėplsT`d=sy/ f2hsT`dg.
For strain ratesėpl.ėplsT`d, the curve returns tos=sy. The
Stokes-Einstein relation pertains to the portion of this func-
tion that goes into the origin at small strain rates. Thus, as
long as we measure diffusion and viscosity over times longer
than vnoise

−1 , we can estimate the diffusion constant,DsT`d
~,2 ėplsT`d, and conclude thatkB T`~,3 sy as before, inde-
pendent of what value ofėpl= ėplsT`d we chose at the
beginning.

We can use the above argument—not much more than a
dimensional analysis—to make an order-of-magnitude esti-
mate forT`. The tensile yield stress that we used in[2] was
1.9 GPa, which gives us an approximate value forsy. Then
T`,50 ,A

3 K, where,A is the molecular length scale, mea-
sured in angstroms. If,A,3, then T`,103 K. A similar
rough estimate emerges if we guess on dimensional grounds
that EZ,m ,3, wherem is the shear modulus. Then, using
the value of Young’s modulus given in[4], we havex`

,sy/m,0.02. If EZ,2 ev, then again we findT`,103 K.
These estimates are consistent with Liu’s suggestion[22]
thatT` is the glass temperature, which also is roughly of the
order of 103 K for these materials.

With this understanding of the role and approximate mag-
nitude of the effective temperature, we now can deduce an
equation of motion for it by returning to the principle of
energy balance. As noted above, one of the main differences
between this model and that discussed in[2] is that, here, the
energy stored in the STZ’s is only a very small fraction of the
energy contained in the configurational degrees of freedom.
Thus we can assume that the energy dissipated by the STZ’s
during plastic deformation simply adds to the energy of con-
figurational disorder. It then seems reasonable to assume
that, over the range of temperatures of interest here(approxi-
mately 550–700 K for the data reported in[4]), the specific
heat of the configurational degrees of freedom is a
constant—say,CD=kB c0/,3, where c0 is a dimensionless
number of order unity. The associated configurational energy
is CD Tef f, and the energy-balance equation—i.e., the equa-
tion for the rate at which this energy is changing per unit

time, CD Ṫef f—becomes the equation of motion forTef f.
In accord with the discussion in the preceding paragraphs,

I propose to write this equation of motion in the form

CDṪef f = QS1 −
Tef f

T`
D + e0Ksxd

rsTd
t0

kBsT − Tef fd. s3.1d

The first term on the right-hand side says that the energy
dissipated during plastic deformation, at rateQ per unit vol-
ume, is absorbed by the configurational degrees of freedom.
The second term proportional toQ is the one that says that
this process must drive the system toward a limiting state of
disorder in whichTef f→T`. This equation can be used only
when time variations are very much slower than the micro-
scopic ratet0

−1, because the preceding argument for a limit-
ing value ofTef f is valid only in those circumstances. Thus,
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we cannot expect this theory to be accurate for strain rates
higher than aboutse0/t0dexps−1/x`d; however, such rates
are well above the experimental range.

The term in Eq.(3.1) proportional torsTd says thatTef f

→T in the absence of external driving and does so at a rate
which becomes very small at low temperatures.Ksxd is an
equilibration coefficient, defined with a factore0 for conve-
nience. Thex dependence ofK reflects the fact that the
equilibration rate must depend on the state of disorder. In
what follows, I shall assume that

Ksxd = ke−b/x, s3.2d

so thate0 Ksxd is proportional to the density of sites at which
the equilibration transitions take place. It will be simplest at
first to let the equilibration parameterb=1, which means that
the latter sites are the same as the STZ’s. However, as we
shall see, other possibilities are interesting.

Next, convert Eq.(3.1) into an equation forx by writing,
as in Eq.(2.10):

Qss,L,Dd =
m̄e0

t0
e−1/xGss̃,md. s3.3d

The functionG (not G+r) is

Gss̃,md =
2Css̃dfT ss̃d − mgfs̃− jsmdg + rsTdmjsmd

1 − mjsmd
.

s3.4d

Note that the term proportional torsTd in G disappears in an
undriven system becausem→0 in that case. We then find

t0c0

e0
ẋ = e−1/xGss̃,mdsx` − xd + krsTde−b/xS T

TZ
− xD .

s3.5d

In order to avoid adding another arbitrary constant of order
unity, I have usedx`=m̄,3/EZ in evaluating the coefficient
of G in Eq. (3.5). Equation(3.5), along with Eqs.(2.25),
(2.26), and (3.4), provides a complete specification of the
equations of motion for this model.

IV. LIMITING BEHAVIORS AT SMALL STRESS

At this point in the development, it is necessary to rewrite
the two-dimensional STZ equations of motion in a form in
which they can be applied directly to three-dimensional ex-
periments, especially those reported in[4]. To do this, I as-
sume that the stresses and strain rates are uniform throughout
the experimental samples and follow[2,17] by assuming that
I can simply replace the variabless̃, ėpl, andm by traceless
symmetric tensors. In the case of a uniform sample with
uniaxial applied stress in, say, thex direction and free, stress-
less surfaces normal to they andz axes, each of these tensors
is diagonal with elements proportional tos1,−1/2,−1/2d.
The total stress tensorsi j has only one nonzero element,
sxx;s. Define m2=s1/2dmij mij =s3/4dmxx

2 , so that m

=Î3/4 mxx and, similarly, s̃2=s1/2ds̃i j s̃i j =s3/4ds̃xx
2 and s̃

=Î3/4s̃xx. The only way in which this analysis differs from

that in [2] is that, here, we must form tensorial generaliza-
tions of the functionsT ss̃d andjsmd. This can be done most
simply by writing Ti jss̃d=ss̃i j / us̃u dT ss̃dand ji jsmd
=smij / umu djsmd.

With these transformations, we recover precisely our ear-
lier formulas, Eqs.(2.25), (2.26), (3.4), and (3.5), as thexx
components of the tensor equations. The single difference is
that, because the experimental strain rateėxx

pl is not rescaled
as ares̃ andm, the parametere0 in Eq. (2.25) is replaced by
e08=Î4/3e0. The low-temperature exchange of stability still
occurs whens̃= s̃y where s̃yT ss̃yd=1; therefore, at the tem-
peratures of interest here, we still haves̃y>1 andsy> m̄. The
experimental data are expressed in terms of the tensile stress,
which becomess=s3/2dsxx=Î3m̄s̃=sys̃, wheresy is the ten-
sile yield stress.

The first quantity that we must compute is the Newtonian
viscosityhN—that is, the linear viscosity in the limit of van-
ishingly small stress and strain rate. As in[2], comparing our
theoreticalhN with the experimental measurements reported
in [4] provides initial constraints on several of the parameters
that appear in our equations. In the small-s̃ limit, we have
T ss̃d<as̃ and Css̃d<Cs0d=exps−ad. Then we can deduce
from Eqs.(2.19), (2.20), and (2.28) that, to lowest(linear)
order in s̃,

m0ss̃d <
2

3
as̃. s4.1d

Using Eq.(2.26) and noting that the productm0ss̃ds̃ is small
of order s̃2, we have

2Css̃dfT ss̃d − m0ss̃dg < m0ss̃drsTd, s4.2d

so that, using Eq.(2.25), we find

ėxx
pl =

e0

t0
e−1/xCss̃dfT ss̃d − m0ss̃dg <

e08

2t0
e−1/xm0ss̃drsTd.

s4.3d

To evaluatex from Eq. (3.5), note from Eq.(3.4) that G is
small of orders̃2, so thatx<T/TZ in the small-s̃, steady-state
limit. Therefore,

ėxx
pl <

e0

3t0
asTds̃ expF−

TZ

T
− asTdG s4.4d

and

hNsTd = lim
ėpl→0

m̄s̃xx

2ėxx
pl =

Î3m̄t0

e0asTd
expFTZ

T
+ asTdG . s4.5d

We also can use this analysis to compute the temperature-
dependent stress relaxation rates discussed in[4]. In these
measurements, samples first were compressed at relatively
small strain rates and then held at fixed total strainetotal

while the stress was measured as a function of time. The
equation of motion that we must solve therefore is
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ėxx
total =

sy

E
ṡ̃+ ėxx

pl = 0, s4.6d

where E is Young’s modulus. Using the preceding small-
stress approximations and again assuming thatx is thermal-
ized in these experimentssx<T/TZd, we find

ṡ̃< −
e08E

3t0sy
asTdexpF−

TZ

T
− asTdGs̃; −

s̃

trsTd
, s4.7d

which implies that the exponential relaxation time is

trsTd <
hNsTd

E
. s4.8d

This relation is consistent with the conclusion of Luet al. [4]
that bothhNsTd and trsTd scale with the same temperature-
dependent rate factor. However, ifE=96 GPa as reported by
[4], these theoretical values oftr are too small by a factor of
about 50. This discrepancy may be due to the thermalization
assumption, which might not be consistent with the way in
which these measurements were made.

In [2], we used our expression forhNsTd and the experi-
mental values for this quantity given in[4] to obtain esti-
mates ofrsTd (up to a scale factor) for eight separate values
of the temperature. However, our present formula for the
Newtonian viscosity, Eq.(4.5), is more complicated than the
one in [2] because it now contains a temperature-dependent
STZ density, proportional to exps−1/xd<exps−TZ/Td, as
well as the temperature-dependent rate factorrsTd. More-
over, it will be useful for present purposes to have a smooth
functional representation ofrsTd rather than just values at
separate points. Accordingly, I have fit Eq.(4.5) to the ex-
perimental data using the Cohen-Grest formula[21] as a
purely phenomenological fitting function forasTd. That is, in
Eq. (2.20), I have used

asTd =
TR

T − T0 + ÎsT − T0d2 + T1T
, s4.9d

whereTR, T0, andT1 are fitting parameters with the dimen-
sions of temperature.

Clearly, we cannot obtain a unique fit for all the param-
eters in Eqs.(4.5) and (4.9) from just the viscosity data, so
we now must make some physical assumptions. The guiding
principle is to make the simplest possible choices and to add
complications only if they become necessary. In this spirit,
we may assume that there is only one temperature that char-
acterizes the glass transition. In Eq.(4.9), that temperature is
T0. If we then adopt Liu’s hypothesis[22] thatT` is the glass
temperature, we should chooseT`=T0. On the basis of vari-
ous clues, including calorimetric analyses, I estimate that
T`=T0>800 K. This value is consistent with my guess that
the temperatures used in the experiments of[4] are all well
below T0; that is, the behaviors seen in these experiments
seem characteristic of states in which the material is soften-
ing rapidly with increasingT but is still stiff enough to re-
semble a solid in resisting deformation.

Next we must estimateTZ. In the preceding dimensional
analysis, we guessed thatTZ/T`,m /sy,50, which would
imply that TZ,40 000 K. This estimate, however, is uncer-
tain by a least a factor 2. A better strategy, I think, is to
assume that the Newtonian viscosity is dominated at the
higher temperatures shown in[4], Fig. 10, by the factor
expsTZ/Td in Eq. (4.5). That fitting strategy yieldsTZ

>25 000 K, which is within the previous uncertainty and is
the value that I will use here. It means thatEZ>2 eV, which
seems plausible for a vacancy-formation energy.

Figure 2 shows the fit to the Newtonian viscosity as a
function of temperature withTZ=25 000 K, T0=800 K, TR
=600 K, T1=28 K, andh0; m̄t0/e0>2310−11 Pa sec. The
eight points at the lowest temperatures in Fig. 2 are the ones
that we used in[2]; the four points at higher temperatures are
also taken from[4], Fig. 10. Figure 3 shows the correspond-

FIG. 2. Experimental values of the Newtonian viscosityhNsTd
taken from Luet al. [4] and the analytic fit to these points obtained
by choosing parameters in Eqs.(2.20) and(4.9) as explained in the
text.

FIG. 3. The dimensionless functionasTd determined by fitting
the viscosity data shown in Fig. 2.
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ing function asTd. The values ofa in the range of experi-
mental interest, roughly 600–700 K, are of order
8–15—that is, in about the same range as the values that
Falk and I[5] found to fit the original MD simulations.

As in [2], I assume that the tensile yield stress at the
experimental temperatures is the same as the room tempera-
ture value reported in[4]—i.e., sy=1.9 GPa. Thusm̄sy/Î3
>1.1 GPa. With the above value ofh0, we have e08 /t0
>6.331019 sec−1.

V. ANALYSIS AND COMPARISON WITH EXPERIMENTS

We are now ready to explore the properties and experi-
mental predictions of this effective temperature theory at val-
ues of the stress and strain rate where the response to loading
becomes nonlinear. Look first at the steady-state solutions
obtained by using Eq.(2.25) to compute the strain rate(with
e0→e08) and by setting the time derivatives on the left-hand
sides of Eqs.(2.26) and(3.5) to zero. The stresses and strain
rates found in this way correspond to those obtained by Luet
al. [4] from the late, steady-state stages of their constant-
strain-rate measurements. The steady-state values of the re-
duced effective temperaturex may, in principle, be obtained
by calorimeteric measurements as discussed below.

It is simplest to start by settingb=1 in Eq.(3.2) which, as
mentioned earlier, means that the thermal fluctuations that
drive the effective disorder temperature toward the tempera-
ture of the heat bath occur predominantly at the STZ sites.
The only other adjustable parameter in steady state isk. Fig-
ure 4 shows the dimensionless stresss̃ as a function of the
scaled strain ratehNsTdėxx

pl for b=1, k=2, and for four dif-
ferent temperaturesT in the range of the metallic glass data
[4]. It should be compared with Fig. 3 of[2], in which these
curves lie accurately on top of one another up through the
yield stress. This scaling behavior, which was discovered ex-
perimentally by Katoet al. [3] and explored in more detail

by Lu et al. [4], clearly is broken here. The trend toward
lower stresses at lower temperatures can be understood as a
nonlinear property of the effective temperature theory. As the
strain rate increases,Tef f increases and the driving force re-
quired to maintain that strain rate decreases accordingly. Be-
causehNsTd increases rapidly with decreasingT, we may
understand the curves that are plotted as functions of
hNsTdėxx

pl in Fig. 4 to be a sequence in whichTef f increases as
T decreases.

The important question is whether this nonscaling behav-
ior is ruled out by experiment. Figure 5 shows a direct com-
parison of the data from[4] with theoretical curves for eight
different temperatures, in analogy to Fig. 5(a) in [2]. The
value k=2 was chosen to optimize the fit to the data at
643 K. If we use the temperatures cited in[4], the agreement
is reasonably accurate for 623 K and above(apart from a few
apparently outlying points) and also(perhaps fortuitously) is
satisfactory for the two points at 573 K. The theoretical
curves for the latter set of temperatures are shown by solid
lines in the figure.

However, the agreement is not so good at 593 and 603 K,
and is especially poor at 613 K. In interpreting this disagree-
ment, remember that we evaluatedrsTd in [2] point by point
from the viscosity data given in[4] and then checked that
these values were the same as those that the latter authors
had used in scaling their strain rates. Thus we did not use the
nominal values of the temperatureT in any of those analyses.
Here, on the other hand, I have fitrsTd by an analytic ex-
pression, Eqs.(2.20) and (4.9), and have used this function
of T in plotting the curves shown in Fig. 5. The problem is
that the viscosity data for the lowest four temperatures
shown in Fig. 2 does not fit onto a smooth curve. Since there
is no reason to believe that the material is undergoing any
qualitative change in this temperature range[23], we must
presume that either the reported temperatures or the Newton-

FIG. 4. Graphs of the scaled deviatoric stresss̃=s/sy as func-
tions of the scaled, steady-state strain ratehNsTdėxx

pl for four differ-
ent temperatures.

FIG. 5. Tensile stress as a function of the steady-state strain rate
ėxx

pl (in sec−1). The data points, taken from Luet al. [4], correspond
to the nominal temperatures as shown, and the solid theoretical
curves are computed using those temperatures. The dashed curves
are computed using, from left to right,T=588, 598, and 607 K.
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ian viscosities—or both—are inaccurate.Accordingly, instead
of using the nominal temperatures 593, 603, and 613 K in
drawing the theoretical curves in Fig. 5, I have used 588,
598, and 607 K, respectively, and have indicated these re-
sults by dashed lines. Note that these small shifts in tempera-
ture produce large shifts in the predicted Newtonian viscosi-
ties and thus move the data points closer to the smooth curve
in Fig. 2. More importantly, the low-temperature data are
largely in the region where the linear Newtonian behavior is
becoming nonlinear superplasticity; therefore the ability of
the theory to account for the data seems significant. In short,
although the effective temperature theory systematically de-
parts from the strong scaling behavior obtained in[2], it
appears that these departures are within the present uncer-
tainties in the experimental data.

Our one remaining point of contact with the data of Lu
et al. [4] is the transient response shown in their constant
strain-rate experiments. As in[2], we can use these experi-
mental results to obtain separate estimates of the parameters
e0 and t0 instead of just their ratio. To compute the corre-
sponding stress-strain curves, write the equation of motion
for the total strainetotal (including elastic strain),

sy

E
ṡ̃= ėxx

total −
e08

t0
e−1/xCss̃dfT ss̃d − mg, s5.1d

and solve this simultaneously with Eqs.(2.26) and (3.5) for
s̃, m, andx at fixed ėxx

total. In preparation for plotting stress-
strain curves, we can letexx

total replace time as the independent
variable, in which casee08 appears separately as well as in the
combinatione0/t0. Thus, fitting the transient response yields
separate estimates fore08 andt0.

The parametere08 must be a large number in this version
of the STZ theory, because the fraction of the volume cov-
ered by STZ’s is proportional toe08 exps−1/xd, not just toe08
by itself as in[2]. At x=x`, this fraction would be unity ife08
were about 331014. I find thate08>1014 works well for mak-
ing the theoretical stress-strain curves agree with the experi-
mental ones shown in[4], Figs. 1 and 2. With that value, the
equilibrated fractional densitye08 exps−TZ/Td is of order
0.002 atT=648 K; thus the effective temperature theory pro-
duces estimates of the STZ density that are in accord with
the idea that this density should be small, which was not
necessarily the case in[2]. With e08>1014 and our earlier
estimate e08 /t0>6.331019 sec−1, we have t0,10−6 sec,
which seems reasonable if we remember thatt0

−1 is the STZ
transformation rate in the limit of infinite applied stress.

With these parameters, plusk=2, b=1, andc0=1 in Eq.
(3.5) and E/sy>50, the stress-strain curves are essentially
identical to those shown in Figs. 1 and 2 of[2] which, in
turn, were similar to the experimental ones shown in[4]. In
this fully nonlinear theory, the initial rise of the stress is
accurately determined by Young’s modulus, instead of being
too small because the plastic response was unrealistically
enhanced at small stresses in the quasilinear version. Typical
stress-strain curves, analogous to those in[2], are shown in
Figs. 6 and 7. As in[2], initial values ofs̃ andm are zero. I
have assumed that the initial value ofx is always equal to

T/TZ—that is, that the samples are completely equilibrated
initially by annealing at the experimental temperatures.

Turn now to the thermodynamic properties of this theory,
which were missing in the earlier version[2] but now can be
explored in detail. Given our assumption that the configura-
tional energy is simply proportional to the effective tempera-
ture, we can convert the equation of motion forx in the
absence of driving—i.e., Eq.(3.5) with G=0—into an equa-
tion for the specific heat measured in a differential scanning

calorimetry(DSC) experiment. Let the heating rate beh=Ṫ.
Then Eq.(3.5) becomes

dx

dT
=

e08

c0t0

krsTd
h

e−b/xS T

TZ
− xD . s5.2d

The left-hand side is equal to the specific heat in unitsCD TZ.
Figure 8 showsdx /dT computed by solving Eq.(5.2) with

FIG. 6. Theoretical stress-strain curves forėxx
total=0.1 sec−1 at

three different temperatures.

FIG. 7. Theoretical stress-strain curves forT=643 K at four
different strain ratesėxx

total.
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k=2, b=1, andc0=1 and a heating rate of 10 K per minute.
The initial temperature used for integrating this equation was
550 K, but the results are insensitive to this value as long as
it is low enough. The different states of the system are speci-
fied by the initial values ofx which, in temperature units
(i.e., expressed asTef f=TZ x) were chosen here to be 630,
640, 650, and 660 K. These curves resemble those found, for
example, in De Heyet al. [18] or Tuinstraet al. [25]. Even-
tually they should be compared with data for
Zr41.2Ti13.8Cu12.5Ni10Be22.5 such as that shown in Fig. 2 of
Buschet al. [24], but that analysis would best be carried out
in connection with experiments like those discussed in the
next paragraph. Not shown in Fig. 8 is the prediction from
Eq. (5.2) that, when the system is fully annealed at lower
temperatures so that the initialTef f is well below 600 K, the
spike becomes very sharp and moves to temperatures above
700 K.

The differences between the areas under specific heat
curves of the kind shown in Fig. 8 are equal to the differ-
ences between the enthalpies of systems with the correspond-
ing initial values ofx. Those values can be controlled experi-
mentally by shearing the system at fixed bath temperatures
and strain rates for long enough times that they achieve
steady state. On the theoretical side, we can compute the
values ofx as functions of temperature and strain rate by
finding the steady-state solutions of Eqs.(2.26) and(3.5), as
we have done to obtain the steady-state stresses in Figs. 4
and 5. Thus our steady-state values ofx can be determined
experimentally. Precisely such measurements have been per-
formed by De Heyet al. [18], who interpreted their function
x as a reduced free volume instead of a reduced effective
temperature. The two interpretations may be effectively
equivalent for systems held at constant pressure because, un-
der that condition, the change in volume will be proportional
to the effective temperature.

Figure 4 in De Heyet al. [18] shows values ofx as
functions of strain rate at three different temperatures for thin

ribbons of amorphous Pd40Ni40P20. Without detailed infor-
mation about other parameters of the kind obtained here
from [4], we cannot try to reproduce the results of[18] theo-
retically. Instead, I have used the parameters determined here
for amorphous bulk Zr41.2Ti13.8Cu12.5Ni10Be22.5 to compute a
graph analogous to the one in[18]. The results are shown in
Fig. 9 for four different bath temperaturesT. Note thatx
approachesT/TZ at low strain rates and goes tox`=0.032 at
large strain rates. At intermediate rates, such as those shown
in [18], the values ofx decrease asT increases, consistent
with the idea that the number of STZ’s needed to sustain a
fixed strain rate decreases when thermal fluctuations assist
the transitions. As anticipated in[2], these curves cross each
other as they move to small strain rates. Figure 9 implies that
this crossover might be observed experimentally in
Zr41.2Ti13.8Cu12.5Ni10Be22.5.

All of the preceding calculations have been based on the
equation of motion forx, Eq. (3.5), with the equilibration
parameterb set equal to unity. Remember that the quantity
b kB TZ is a characteristic formation energy for configura-
tional fluctuations that drive the effective temperatureTef f
toward the bath temperatureT. A value of b smaller than
unity implies that these fluctuations occur more frequently
than the STZ’s, which seems plausible.(The opposite situa-
tion, b.1, might also occur.) Figure 10 shows what happens
to the steady-state stress versus strain rate curves if we
chooseb=0.5. In order to be at least roughly consistent with
experimental data—that is, in order that the two terms on the
right-hand side of Eq.(3.5) be of comparable size whenx is
nearx`—we must choose a much smaller value ofk than
previously. Specifically,k=10−8 for the graphs shown in Fig.
10. The most important new feature is that the curve for the
lowest of the four temperatures shown here,T=573 K no
longer remains below the others as it does in Fig. 4, but now
rises above and goes through a maximum and then a mini-
mum before returning to approximately its previous behav-
ior. This multivalued property is seen more clearly if, in-

FIG. 8. Scaled specific heat curvesdx /dT corresponding to
simulated DSC measurements at a heating rate of 10 K per minute.
The initial states, in order of decreasing peak height, have effective
disorder temperaturesTef f=630, 640, 650, and 660 K.

FIG. 9. Steady-state values of the scaled(dimensionless) effec-
tive temperaturex as functions of strain rate at four different
temperatures.
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stead, we plot the reduced effective temperaturex as a
function of the stress, as shown in Fig. 11.

The multivalued behavior ofx implies a shear-banding
instability. (See, for example, the analyses by Olmsted and
co-workers[26–28] of shear banding in several similar situ-
ations.) In the usual simple-shear experiment in a strip ge-
ometry, the shear stress remains constant across the sample
in order to satisfy force balance. If the externally imposed
shear rate is chosen so that the stress lies in the multivalued
region, then the sample will have to break up into regions of

large and small flow or, equivalently, high and low effective
temperature. That is, the system will encounter a shear-
banding instability and most likely will fail via shear frac-
ture. Figure 11 indicates that this instability appears only at
temperatures lower than about 648 K and that the onset
stress increases with decreasing temperature. The figure also
implies that, even at low temperatures, uniform flow should
be stable at sufficiently large driving forces.

A satisfactory theory of shear banding also needs a length
scale, because it must describe a smooth transition between
the jammed and flowing regions of the material. The effec-
tive temperature theory suggests that a natural way to intro-
duce this length isto add a diffusion term proportional to
¹2 x to the right-hand side of Eq.(3.5). The associated dif-
fusion constant will be very much smaller than the ordinary
thermal diffusion constant because configurational disorder
must diffuse extremely slowly at temperatures below the
glass transition. We may even be able to estimate the mag-
nitude of this diffusion constant from the arguments pre-
sented in Sec. III. Thus, the effective temperature theory
seems to be giving us a clue about how to solve the long-
standing problem of identifying an intrinsic length scale for
shear localization. A fully detailed development of these
ideas, however, is beyond the scope of the present paper.

VI. CONCLUDING REMARKS

My main conclusion is that the effective-temperature ver-
sion of STZ theory looks promising but is far from being
quantitatively confirmed by comparison with experimental
data. I see several directions for future investigations.

First, there is a need to combine mechanical and calori-
metric measurements, in the manner described by De Hey
et al. [18], in order to test predictions of the kind shown in
Fig. 9. Such experiments may come as close as is possible to
actually measuring the effective temperature and learning
whether it behaves as predicted. It also would be useful to
repeat the mechanical experiments with enough precision to
test the predicted deviations from scaling shown in Fig. 4 or
10. For this purpose, it might be well to use other materials
such as polymeric glasses or, perhaps, colloidal suspensions
in order to control the experimental conditions more pre-
cisely than seems possible with amorphous metals.

A second direction for further research is to develop the
theory of shear banding along the lines described above and
to test the results experimentally. For example, it should be
possible to predict and measure the onset of spatial instabil-
ity as a function of temperature and applied stress.

In my opinion, the principal theoretical question left un-
answered is the temperature dependence of the rate factor
rsTd. This factor has been determined empirically here from
experimental measurements of the Newtonian viscosity, with
no theoretical justification whatsoever. The STZ theory de-
scribed in this paper and in[2] differs most markedly from
the earlier flow-defect theories in that we ascribe the non-

FIG. 10. Graphs of the scaled deviatoric stresss̃=s/sy as func-
tions of the scaled strain ratehNsTdėxx

pl for four different tempera-
tures. This figure is analogous to Fig. 4, but the equilibration pa-
rameterb has been set equal to 0.5.

FIG. 11. Graphs of the scaled effective temperaturex as func-
tions of the scaled deviatoric stresss̃=s/sy at four different tem-
peratures. As in Fig. 10, the equilibration parameter isb=0.5.
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Arrhenius behavior of the viscosity, not to the density of
defects, but to the transition rates. Thus the kind of analysis
that was used in deriving the Cohen-Grest formula[21]
seems unlikely to be applicable. Instead, we must learn how
to perform a truly nonequilibrium analysis of the processes
by which configurational rearrangements occur, both sponta-
neously and as driven by imposed stresses. This is a large
challenge—perhaps the same as that of understanding the
fundamental nature of the glass transition itself.
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